As will be seen from the following small investigation, the inequality of the problem holds if and only if the triangle $A B C$ is not obtuse.
The small investigation about this problem.
https://www.linkedin.com/feed/update/urn:li:activity:6601685305533837312
In triangle $A B C$, if L, M, N are midpoints of $A B, A C, B C$. And H is orthocenter of triangle $A B C$, then prove that $L H^{2}+M H^{2}+N H^{2} \leq(1 / 4)\left(A B^{2}+A C^{2}+B C^{2}\right)$.

Solution by Arkady Alt, San Jose ,California, USA.

Let R be circumradius of $\triangle A B C$. Since $A K=b \sin C=2 R \sin B \cdot \sin C$, $A H=2 R \cos A=2 R \cos A$ (because $\triangle A \dot{B}_{1} C_{1} \sim \triangle A B C$ with coefficient of similarity $\cos A$) then $H K=A K-A H=2 R \sin B \sin C-2 R \cos A=$ $2 R(\sin B \cdot \sin C+\cos (B+C))=2 R \cos B \cdot \cos C$. Noting that $K C=b \cos C$ we obtain $N K=|N C-C K|=\left|\frac{a}{2}-b \cos C\right|=\left|\frac{c \cos B+b \cos C}{2}-b \cos C\right|=$ $\left|\frac{c \cos B-b \cos C}{2}\right|=R|\sin C \cdot \cos B-\sin B \cos C|=R|\sin (B-C)|$ we obtain $N H^{2}=N K^{2}+H K^{2}=R^{2}\left((\sin C \cdot \cos B-\sin B \cdot \cos C)^{2}+4 \cos ^{2} B \cdot \cos ^{2} C\right)=$ $R^{2}\left(\sin ^{2} C \cdot \cos ^{2} B+\sin ^{2} B \cdot \cos ^{2} C-2 \sin C \cdot \cos B \cdot \sin B \cdot \cos C+4 \cos ^{2} B \cdot \cos ^{2} C\right)=$ $R^{2}\left(\cos ^{2} B\left(\sin ^{2} C+\cos ^{2} C\right)+\cos ^{2} C\left(\sin ^{2} B+\cos ^{2} B\right)+2 \cos B \cos C \cdot \cos (B+C)\right)=$ $R^{2}\left(\cos ^{2} B+\cos ^{2} C-2 \cos A \cos B \cos C\right)$.
Hence, $L H^{2}+M H^{2}+N H^{2}=\sum R^{2}\left(\cos ^{2} B+\cos ^{2} C+2 \cos A \cos B \cos C\right)=$ $R^{2}\left(2\left(\cos ^{2} A+\cos ^{2} B+\cos ^{2} C\right)-6 \cos A \cos B \cos C\right)$ and since $\cos ^{2} A+\cos ^{2} B+\cos ^{2} C+2 \cos A \cos B \cos C=1$ (in any triangle $A B C$) then $L H^{2}+M H^{2}+N H^{2}=R^{2}\left(5\left(\cos ^{2} A+\cos ^{2} B+\cos ^{2} C\right)-3\right)=$
$R^{2}\left(12-5\left(\sin ^{2} A+\sin ^{2} B+\sin ^{2} C\right)\right)=12 R^{2}-\frac{5}{4}\left(a^{2}+b^{2}+c^{2}\right)$
and now we ready to promised investigation.
Since in any triangle holds inequality $a^{2}+b^{2}+c^{2} \leq 9 R^{2}$ then $12 R^{2}-\frac{5}{4}\left(a^{2}+b^{2}+c^{2}\right) \geq 12 R^{2}-\frac{5}{4} \cdot 9 R^{2}=\frac{3}{4} R^{2}$ that is in any triangle holds inequality $L H^{2}+M H^{2}+N H^{2} \geq \frac{3}{4} R^{2}$.
If triangle $A B C$ is not acute then $a^{2}+b^{2}+c^{2} \leq 8 R^{2}$ and, therefore $12 R^{2}-\frac{5}{4}\left(a^{2}+b^{2}+c^{2}\right) \geq 12 \cdot \frac{a^{2}+b^{2}+c^{2}}{8}-\frac{5}{4}\left(a^{2}+b^{2}+c^{2}\right)=\frac{1}{4}\left(a^{2}+b^{2}+c^{2}\right)$,
that is $L H^{2}+M H^{2}+N H^{2} \geq \frac{1}{4}\left(a^{2}+b^{2}+c^{2}\right)$ in any not acute triangle.
And at last, if $\triangle A B C$ isn't obtuse then $a^{2}+b^{2}+c^{2} \leq 8 R^{2}$ and, therefore
$12 R^{2}-\frac{5}{4}\left(a^{2}+b^{2}+c^{2}\right) \leq 12 \cdot \frac{a^{2}+b^{2}+c^{2}}{8}-\frac{5}{4}\left(a^{2}+b^{2}+c^{2}\right)=\frac{1}{4}\left(a^{2}+b^{2}+c^{2}\right)$
that is $L H^{2}+M H^{2}+N H^{2} \leq \frac{1}{4}\left(a^{2}+b^{2}+c^{2}\right)$ in any not obtuse triangle
And in the both latter inequalities equality occurs iff triangle $A B C$ is right angled.
Thus, inequality $L H^{2}+M H^{2}+N H^{2} \leq(1 / 4)\left(A B^{2}+A C^{2}+B C^{2}\right)$ holds iff $\triangle A B C$ isn't obtuse.

